Publications by authors named "J M Knapper"

The OpenFlexure Microscope is an accessible, three-dimensional-printed robotic microscope, with sufficient image quality to resolve diagnostic features including parasites and cancerous cells. As access to lab-grade microscopes is a major challenge in global healthcare, the OpenFlexure Microscope has been developed to be manufactured, maintained and used in remote environments, supporting point-of-care diagnosis. The steps taken in transforming the hardware and software from an academic prototype towards an accepted medical device include addressing technical and social challenges, and are key for any innovation targeting improved effectiveness in low-resource healthcare.

View Article and Find Full Text PDF

In this manuscript we assessed the utility of a low-cost 3D printed microscope to evaluate esophageal biopsies. We conducted a comparative analysis between the traditional microscope and our 3-D printed microscope, utilizing a set of esophageal biopsy samples obtained from patients undergoing screening endoscopy. Two pathologists independently examined 30 esophageal biopsies by light microscopy and digital images obtained using a low-cost 3D printed microscope (Observer 1 and 2).

View Article and Find Full Text PDF

Background And Objectives: The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders generally caused by single nucleotide variants (SNVs) or indels in coding regions or by repeat expansions in coding and noncoding regions of SCA genes. Copy number variants (CNVs) have now also been reported for 3 genes-, , and -but not all SCA genes have been screened for CNVs as the underlying cause of the disease in patients. In this study, we aim to assess the prevalence of CNVs encompassing 36 known SCA genes.

View Article and Find Full Text PDF

Microscopes are vital pieces of equipment in much of biological research and medical diagnostics. However, access to a microscope can represent a bottleneck in research, especially in lower-income countries. 'Smart' computer controlled motorized microscopes, which can perform automated routines or acquire images in a range of modalities are even more expensive and inaccessible.

View Article and Find Full Text PDF

We present the OpenFlexure Microscope software stack which provides computer control of our open source motorised microscope. Our diverse community of users needs both graphical and script-based interfaces. We split the control code into client and server applications interfaced via a web API conforming to the W3C Web of Things standard.

View Article and Find Full Text PDF