Publications by authors named "J M Kiesecker"

Proactively identifying where land conversion might occur is critical to targeted and effective conservation planning. Previous efforts to map future habitat loss have largely focused on forested systems and have been limited in their consideration of drivers of loss. We developed a 1-km resolution, global map of land conversion pressure from multiple drivers, referred to as the conversion pressure index (CPI).

View Article and Find Full Text PDF

Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature's contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature's contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species.

View Article and Find Full Text PDF

Rapid development of renewable energy sources, particularly solar photovoltaics (PV), is critical to mitigate climate change. As a result, India has set ambitious goals to install 500 gigawatts of solar energy capacity by 2030. Given the large footprint projected to meet renewables energy targets, the potential for land use conflicts over environmental values is high.

View Article and Find Full Text PDF

Most new infectious diseases emerge when pathogens transfer from animals to humans. The suspected origin of the COVID pandemic in a wildlife wet market has resurfaced debates on the role of wildlife trade as a potential source of emerging zoonotic diseases. Yet there are no studies quantitatively assessing zoonotic disease risk associated with wildlife trade.

View Article and Find Full Text PDF

Spatial prioritization is a critical step in conservation planning, a process designed to ensure that limited resources are applied in ways that deliver the highest possible returns for biodiversity and human wellbeing. In practice, many spatial prioritizations fall short of their potential by focusing on places rather than actions, and by using data of snapshots of assets or threats rather than estimated impacts. We introduce spatial action mapping as an approach that overcomes these shortfalls.

View Article and Find Full Text PDF