Publications by authors named "J M Jacque"

Intrinsically disordered regions in eukaryotic proteomes contain key signaling and regulatory modules and mediate interactions with many proteins. Many viral proteomes encode disordered proteins and modulate host factors through the use of short linear motifs (SLiMs) embedded within disordered regions. However, the degree of viral protein disorder across different viruses is not well understood, so we set out to establish the constraints acting on viruses, in terms of their use of disordered protein regions.

View Article and Find Full Text PDF

Infection of a cell by lentiviruses, such as human immunodeficiency virus type 1 or feline immunodeficiency virus, results in the formation of a reverse transcription complex, the pre-integration complex (PIC), where viral DNA is synthesized. In non-dividing cells, efficient nuclear translocation of the PIC requires the presence of the inner nuclear lamina protein emerin (EMD). Here, we demonstrate that EMD phosphorylation is induced early after infection in primary non-dividing cells.

View Article and Find Full Text PDF

Previous relatively small studies have associated particular amino acid replacements and deletions in the HIV-1 nef gene with differences in the rate of HIV disease progression. We tested more rigorously whether particular nef amino acid differences and deletions are associated with HIV disease progression. Amino acid replacements and deletions in patients' consensus sequences were investigated for 153 progressor (P), 615 long-term nonprogressor (LTNP), and 2,311 unknown progressor sequences from 582 subtype B HIV-infected patients.

View Article and Find Full Text PDF

Aims: In human immunodeficiency virus infection, macrophage-tropic and lymphotropic viruses exist in the host. Central nervous system (CNS) infection is an early and ongoing event, important to understand when developing strategies to treat infection. Some knowledge exists on macrophage-tropic virus interactions with the blood-brain barrier (BBB), and the aim of this study was to investigate lymphotropic lentivirus interactions with the BBB.

View Article and Find Full Text PDF

Primate lentiviruses such as human immunodeficiency type 1 (HIV-1) have the capacity to infect non-dividing cells such as tissue macrophages. In the process, viral complementary DNA traverses the nuclear envelope to integrate within chromatin. Given the intimate association between chromatin and the nuclear envelope, we examined whether HIV-1 appropriates nuclear envelope components during infection.

View Article and Find Full Text PDF