The aponeurosis is a large fibrous connective tissue structure within and surrounding skeletal muscle and is a critical component of the muscle-tendon unit (MTU). Due to the lack of consensus on terminology and the heterogeneous nature of the aponeurosis between MTUs, there are several questions that remain unanswered. For example, the aponeurosis is often conflated with the free tendon rather than being considered an independent structure.
View Article and Find Full Text PDFRNA medicines have become a promising platform for therapeutic use in recent years. Understanding the immunomodulatory effects of novel mRNA-lipid nanoparticles (LNPs) is crucial for future therapeutic development. An in vitro whole blood assay was developed to assess the impact of mRNA-LNPs on immune cell function, cytokine release, and complement activation.
View Article and Find Full Text PDFTissue-resident memory T (T) cells preferentially reside in peripheral tissues, serving as key players in tumor immunity and immunotherapy. The lack of effective approaches for expanding T cells and delivering these cells in vivo hinders the exploration of T cell-mediated cancer immunotherapy. Here, we report a nanoparticle artificial antigen-presenting cell (nano-aAPC) ex vivo expansion approach and an in vivo delivery system for T cells.
View Article and Find Full Text PDFBackground: Advances in instrumented mouthguards (iMGs) allow for accurate quantification of single high-acceleration head impacts and cumulative head acceleration exposure in collision sports. However, relationships between these measures and risk of brain cell injury remain unclear.
Aim: The purpose of this study was to quantify measures of non-concussive head impact exposure and assess their association with blood glial fibrillary acidic protein (GFAP), neurofilament light (NfL) and phosphorylated-tau-181 (p-tau-181) levels in male Australian football players.
ACS Appl Mater Interfaces
December 2024
Despite the potential of nanoenergetics as promising energy sources with high energy densities and fast energy release, our limited ability to predict combustion speeds restricts the utilization of nanoenergetics. Here, we provide a comprehensive analysis of thermal microstructures subject to heterogeneous reactions and propose a new scaling for combustion wave speeds. To control reaction heterogeneity, two different particle interfacial morphologies of physically mixed and core-shell Al/CuO nanoparticles were synthesized.
View Article and Find Full Text PDF