Publications by authors named "J M Hallenbeck"

Ischemic stroke results in a loss of tissue homeostasis and integrity, the underlying pathobiology of which stems primarily from the depletion of cellular energy stores and perturbation of available metabolites . Hibernation in thirteen-lined ground squirrels (TLGS), , provides a natural model of ischemic tolerance as these mammals undergo prolonged periods of critically low cerebral blood flow without evidence of central nervous system (CNS) damage . Studying the complex interplay of genes and metabolites that unfolds during hibernation may provide novel insights into key regulators of cellular homeostasis during brain ischemia.

View Article and Find Full Text PDF

E-selectin plays an important role in mediating the rolling of leukocytes along and thus, the subsequent extravasation across activated endothelial cells comprising the microvasculature of the blood brain barrier (BBB). In multiple sclerosis (MS) and other inflammatory disorders of the central nervous system (CNS), the microvasculature is altered and immune cells infiltrate the brain and spinal cord contributing to damage, demyelination and ultimately disability. While mucosal administration is typically used to affect lymphocyte hyporesponsiveness or tolerance to suspect autoantigens, intranasal administration to E-selectin has previously been shown to protect against CNS inflammatory insults.

View Article and Find Full Text PDF

Brain ischaemia is a severe form of metabolic stress that activates a cascade of pathological events involving many signalling pathways. Modulation of these pathways is largely mediated by post-translational modifications (PTMs). Indeed, PTMs can rapidly modify pre-existing proteins by attaching chemical or polypeptide moieties to selected amino acid residues, altering their functions, stability, subcellular localizations, or interactions with other proteins.

View Article and Find Full Text PDF

We aimed to characterize peripheral blood gene expression profile of penumbra defined as MRI perfusion-diffusion mismatch (PD MM) in peripheral blood of patients with acute ischemic stroke. We studied 23 patients. Perfusion-diffusion mismatch volume was observed to be associated and significantly correlated with the expression of 34 genes including those related to inflammation, SUMOylation, and coagulation; while lipopolysaccharide inhibition was identified to be a candidate upstream regulator of these processes (-score -2.

View Article and Find Full Text PDF