Biol Rev Camb Philos Soc
September 2024
Ocean acidification (OA) is known to influence biological and ecological processes, mainly focusing on its impacts on single species, but little has been documented on how OA may alter plankton community interactions. Here, we conducted a mesocosm experiment with ambient (∼410 ppmv) and high (1000 ppmv) CO concentrations in a subtropical eutrophic region of the East China Sea and examined the community dynamics of microeukaryotes, bacterioplankton and microeukaryote-attached bacteria in the enclosed coastal seawater. The OA treatment with elevated CO affected taxa as the phytoplankton bloom stages progressed, with a 72.
View Article and Find Full Text PDFBlooms of microalgal red tides and macroalgae (e.g., green and golden tides caused by Ulva and Sargassum) have caused widespread problems around China in recent years, but there is uncertainty around what triggers these blooms and how they interact.
View Article and Find Full Text PDFGlobal marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts.
View Article and Find Full Text PDFOcean acidification can severely affect bivalve molluscs, especially their shell calcification. Assessing the fate of this vulnerable group in a rapidly acidifying ocean is therefore a pressing challenge. Volcanic CO seeps are natural analogues of future ocean conditions that offer unique insights into the scope of marine bivalves to cope with acidification.
View Article and Find Full Text PDF