Strategies to increase the anti-tumor efficacy of cytokine-induced killer cells (CIKs) include genetic modification with chimeric antigen receptors (CARs) or the addition of soluble T-cell engaging bispecific antibodies (BsAbs). Here, CIKs were modified using a transposon system integrating two distinct anti-CD19 CARs (CAR-MNZ and CAR-BG2) or combined with soluble CD3xCD19 BsAb blinatumomab (CIK + Blina). CAR-MNZ bearing the CD28-OX40-CD3ζ signaling modules, and CAR-BG2, designed on the Tisagenlecleucel CAR sequence (Kymriah), carrying the 4-1BB and CD3ζ signaling elements, were employed.
View Article and Find Full Text PDFWe designed, produced, and purified a novel IgG1-like, bispecific antibody (bsAb) directed against B-cell maturation antigen (BCMA), expressed by multiple myeloma (MM) cells, and an immune checkpoint inhibitor (ICI), PDL1, expressed in the MM microenvironment. The BCMA×PDL1 bsAb was fully characterized in vitro. BCMA×PDL1 bound specifically and simultaneously, with nM affinity, to both native membrane-bound antigens and to the recombinant soluble antigen fragments, as shown by immunophenotyping analyses and surface plasmon resonance (SPR), respectively.
View Article and Find Full Text PDFMultiple myeloma (MM) cells from 1 out of 20 patient expressed high basal levels of membrane B-cell maturation antigen (BCMA, TNFRSF17, CD269), which was not upregulated by gamma-secretase inhibitor, suggesting a defective BCMA shedding by gamma-secretase. Genetic analyses of the patient's bone marrow DNA showed no mutations within the BCMA coding region, but rather partial deletion of PSEN1 and amplification of PSEN2, which encode alternative catalytic units of gamma-secretase. Altogether the data suggest that pt#12 MM cells express high and dysregulated BCMA with no shedding, due to genetic alterations of one or more gamma-secretase subunits.
View Article and Find Full Text PDFCD19-targeted chimeric antigen receptor T (CAR-T) cell therapy has shown unprecedented results in patients with B cell relapsed/refractory acute lymphoblastic leukemia (R/R-ALL) and B cell non-Hodgkin lymphomas where no other curative options are available. In vivo monitoring of CAR-T cell kinetics is fundamental to understand the correlation between CAR-T cells expansion and persistence with treatment response and toxicity development. The aim of this study was to define a robust, sensitive, and universal method for CAR-T cell detection using flow cytometry.
View Article and Find Full Text PDF