Publications by authors named "J M Gehl"

Background And Purpose: Calcium electroporation (CaEP) involves injecting calcium into tumour tissues and using electrical pulses to create membrane pores that induce cell death. This study assesses resultant immune responses and histopathological changes in patients with cutaneous metastases.

Patients/materials And Methods: The aimed cohort comprised 24 patients with metastases exceeding 5 mm.

View Article and Find Full Text PDF

In electrochemotherapy, permeabilization of the cell membrane by electric pulses increases the anti-tumour effect of chemotherapeutics. In calcium electroporation, chemotherapy is replaced by calcium chloride with obvious benefits. This study explores the effect and underlying mechanisms of calcium electroporation on basal cell carcinomas using either high- or low-frequency electroporation.

View Article and Find Full Text PDF

Background: The development of new perioperative treatment modalities to activate the immune system in colorectal cancer might have a beneficial effect on reducing the risk of recurrence after surgery. Calcium electroporation is a promising treatment modality that potentially modulates the tumor microenvironment. The aim of this study was to evaluate the safety of the procedure in the neoadjuvant setting in localized left-sided colorectal cancer (CRC).

View Article and Find Full Text PDF

Purpose: In this study, we aim to investigate gene expression changes in tumor samples obtained from patients with esophageal cancer treated with calcium electroporation. Previously, local treatment with calcium electroporation has been shown to induce gene expression alterations, potentially contributing to a more tumor-hostile microenvironment.

Methods: In this sub-study of a phase I clinical trial, we included five patients with esophageal cancer treated with calcium electroporation.

View Article and Find Full Text PDF

Background: Prehabilitation with exercise interventions during neoadjuvant chemotherapy (NACT) is effective in reducing physical and psychosocial chemotherapy-related adverse events in patients with cancer. In preclinical studies, data also support a growth inhibitory effect of aerobic exercise on the tumour microenvironment with possible improved chemotherapy delivery but evidence in human patients is limited. The aim of the study here described is to investigate if supervised exercise with high-intensity aerobic and resistance training during NACT can improve tumour reduction in patients with breast cancer.

View Article and Find Full Text PDF