Publications by authors named "J M Frachisse"

A fundamental function of an organ is the ability to perceive mechanical cues. Yet, how this is accomplished is not fully understood, particularly in plant roots. In plants, the majority of studies dealing with the effects of mechanical stress have investigated the aerial parts.

View Article and Find Full Text PDF

The study of mechanosensitive channels (MS) in living organisms has progressed considerably over the past two decades. The understanding of their roles in mechanosensation and mechanotransduction was consecrated by the awarding of the Nobel Prize in 2021 to A. Patapoutian for his discoveries on the role of MS channels in mechanoperception in humans.

View Article and Find Full Text PDF

Plants spend most of their life oscillating around 1-3 Hz due to the effect of the wind. Therefore, stems and foliage experience repetitive mechanical stresses through these passive movements. However, the mechanism of the cellular perception and transduction of such recurring mechanical signals remains an open question.

View Article and Find Full Text PDF

During development, tissues are submitted to high variation of compression and tension forces. The roles of the cell wall, the cytoskeleton, the turgor pressure and the cell geometry during this process have received due attention. In contrast, apart from its role in the establishment of turgor pressure, the involvement of the plasma membrane as a transducer of mechanical forces during development has been under studied.

View Article and Find Full Text PDF

Background: The root is an important organ for water and nutrient uptake, and soil anchorage. It is equipped with root hairs (RHs) which are elongated structures increasing the exchange surface with the soil. RHs are also studied as a model for plant cellular development, as they represent a single cell with specific and highly regulated polarized elongation.

View Article and Find Full Text PDF