Publications by authors named "J M Fogg"

DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of DNA gyrase bound to a negatively supercoiled minicircle DNA.

View Article and Find Full Text PDF

Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations.

View Article and Find Full Text PDF

Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations.

View Article and Find Full Text PDF

To address the current lack of validated molecular standards for analytical ultracentrifugation (AUC), we investigated the suitability of double-stranded DNA molecules. We compared the hydrodynamic properties of linear and circular DNA as a function of temperature. Negatively supercoiled, nicked, and linearized 333 and 339 bp minicircles were studied.

View Article and Find Full Text PDF

We consider the evolution of phylogenetic gene trees along phylogenetic species networks, according to the network multispecies coalescent process, and introduce a new network coalescent model with correlated inheritance of gene flow. This model generalizes two traditional versions of the network coalescent: with independent or common inheritance. At each reticulation, multiple lineages of a given locus are inherited from parental populations chosen at random, either independently across lineages or with positive correlation according to a Dirichlet process.

View Article and Find Full Text PDF