A pair of self-assembled InGaAs quantum dots filled with two electrons can act as a singlet-triplet spin qubit that is robust against nuclear spin fluctuations as well as charge noise. This results in a T2* coherence time two orders of magnitude longer than that of a single electron, provided the qubit is operated at a particular "sweet spot" in gate voltage. However, at this fixed operating point the ground-state splitting can no longer be tuned into resonance with e.
View Article and Find Full Text PDFIn semiconductors, the T2* coherence time of a single confined spin is limited either by the fluctuating magnetic environment (via the hyperfine interaction), or by charge fluctuations (via the spin-orbit interaction). We demonstrate that both limitations can be overcome simultaneously by using two exchange-coupled electron spins that realize a single decoherence-avoiding qubit. Using coherent population trapping, we generate a coherent superposition of the singlet and triplet states of an optically active quantum dot molecule, and show that the corresponding T2* may exceed 200 ns.
View Article and Find Full Text PDFWe report the observation of steady-state optical amplification in Raman transitions between the lowest-energy spin states of a single quantum-dot molecule. Absorption and resonance fluorescence experiments demonstrate that the entangled two-electron singlet and triplet states have electric-dipole coupling to a common optically excited state. Fast spin relaxation ensures optical gain on the triplet transition when the singlet transition is driven resonantly.
View Article and Find Full Text PDFConditional quantum dynamics, where the quantum state of one system controls the outcome of measurements on another quantum system, is at the heart of quantum information processing. We demonstrate conditional dynamics for two coupled quantum dots, whereby the probability that one quantum dot makes a transition to an optically excited state is controlled by the presence or absence of an optical excitation in the neighboring dot. Interaction between the dots is mediated by the tunnel coupling between optically excited states and can be optically gated by applying a laser field of the right frequency.
View Article and Find Full Text PDF