Publications by authors named "J M Dzenitis"

Detection of pathogens and relevant genetic markers using their nucleic acid signatures is extremely common due to the inherent specificity genomic sequences provide. One approach for assaying a sample simultaneously for many different targets is the DNA microarray, which consists of several million short nucleic acid sequences (probes) bound to an inexpensive transparent substrate. Typically, complex samples hybridize to the microarray and the pattern of fluorescing probes on the microarray's surface identifies the detected targets.

View Article and Find Full Text PDF

A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector.

View Article and Find Full Text PDF

The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement.

View Article and Find Full Text PDF

The Environmental Sample Processor (ESP) is a device that allows for the underwater, autonomous application of DNA and protein probe array technologies as a means to remotely identify and quantify, in situ, marine microorganisms and substances they produce. Here, we added functionality to the ESP through the development and incorporation of a module capable of solid-phase nucleic acid extraction and quantitative PCR (qPCR). Samples collected by the instrument were homogenized in a chaotropic buffer compatible with direct detection of ribosomal RNA (rRNA) and nucleic acid purification.

View Article and Find Full Text PDF

Background: We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

Results: LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures.

View Article and Find Full Text PDF