Throughout the educational system, students experiencing active learning pedagogy perform better and fail less than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, direct instruction comprehensively describes academic content, while active learning provides structured opportunities for learners to explore, apply, and manipulate content.
View Article and Find Full Text PDFObjective: To determine sex differences in the neurochemical concentrations measured by proton magnetic resonance spectroscopy (H MRS) of healthy mice on a genetic background commonly used for neurodegenerative disease models.
Methods: H MRS data collected from wild type mice with C57BL/6 or related genetic backgrounds in seven prior studies were used in this retrospective analysis. To be included, data had to be collected at 9.
Saliva is a promising specimen for the detection of viruses that cause upper respiratory infections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to its cost-effectiveness and noninvasive collection. However, together with intrinsic enzymes and oral microbiota, children's unique dietary habits may introduce substances that interfere with diagnostic testing. To determine whether children's dietary choices impact SARS-CoV-2 molecular detection in saliva, we performed a diagnostic study that simulates testing of real-life specimens provided from healthy children (n = 5) who self-collected saliva at home before and at 0, 20, and 60 min after eating 20 foods they selected.
View Article and Find Full Text PDFFollowing professional development (PD), implementation of contemporary topics into high school biology requires teachers to make critical decisions regarding integration of novel content into existing course scope and sequence. Often exciting topics, such as neuroscience, do not perfectly align with standards. Despite commitment to enacting what was learned in the PD, teachers must adapt novel content to their perceptions of good teaching, local context, prior knowledge of their students, and state and district expectations.
View Article and Find Full Text PDFAdvances in neuroscience reveal how individual brains change as learning occurs. Translating this neuroscience into practice has largely been unidirectional, from researchers to teachers. However, how teachers view and incorporate neuroscience ideas in their classroom practices remains relatively unexplored.
View Article and Find Full Text PDF