Publications by authors named "J M Debierre"

We report the results of a two-dimensional reference model for the formation of facets on the left and right side of a silicon monograin that is solidified by pulling a thin sample in a constant temperature gradient. Anisotropy functions of both the surface energy and the kinetic attachment coefficient are adapted from a recent model for free growth of silicon micrometer-sized grains [Boukellal et al., J.

View Article and Find Full Text PDF

The oscillatory behavior of cellular patterns produced by directional solidification of a transparent alloy under microgravity conditions was recently observed to depend on the misorientation of the main crystal axis with respect to the direction of the imposed thermal gradient [Pereda et al., Phys. Rev.

View Article and Find Full Text PDF

Experiments performed in DECLIC-DSI on board the International Space Station evidenced oscillatory modes during the directional solidification of a bulk sample of succinonitrile-based transparent alloy. The interferometric data acquired during a reference experiment, V_{p}=1 μm/s and G=19 K/cm, allowed us to reconstruct the cell shape and thus measure the cell tip position, radius, and growth velocity evolution, in order to quantify the dynamics of the oscillating cells. This study completes our previous reports [Bergeon et al.

View Article and Find Full Text PDF

We present a detailed analysis of oscillatory modes during three-dimensional cellular growth in a diffusive transport regime. We ground our analysis primarily on in situ observations of directional solidification experiments of a transparent succinonitrile 0.24wt% camphor alloy performed in microgravity conditions onboard the International Space Station.

View Article and Find Full Text PDF

Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries.

View Article and Find Full Text PDF