The evaluation of nanoplastics bioaccumulation in living organisms is still considered an emerging challenge, especially as global plastic production continues to grow, posing a significant threat to humans, animals, and the environment. The goal of this work is to advance the development of standardized methods for reliable biomonitoring in the future. It is crucial to employ sensitive techniques that can detect and measure nanoplastics effectively, while ensuring minimal impact on the environment.
View Article and Find Full Text PDFDisposable filtering face piece respirators (FFRs) are not approved for reuse as standard of care. However, lessons learnt from the SARS-CoV-2 pandemic, FFRs decontamination and reuse may be needed as crisis capacity strategy to ensure availability in medical facilities. We studied a decontamination methodology based on atmospheric pressure plasma technology, which allows for rapid, contact-free decontamination without utilisation of harmful chemicals, and suitable to access small pores and microscopic filters openings.
View Article and Find Full Text PDFA variety of scientific fields like proteomics and spintronics have created a new demand for on-chip devices capable of sensing parameters localized within a few tens of micrometers. Nano and microelectromechanical systems (NEMS/MEMS) are extensively employed for monitoring parameters that exert uniform forces over hundreds of micrometers or more, such as acceleration, pressure, and magnetic fields. However, they can show significantly degraded sensing performance when targeting more localized parameters, like the mass of a single cell.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2024
In this work, we investigate the dynamics of Scholte-Stoneley waves (SSWs) travelling along elastic metasurfaces, e.g. thin resonant structures embedding mechanical oscillators, placed at the interface between solid and fluid.
View Article and Find Full Text PDFThe pyridoxal 5'-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibility to anticancer drugs.
View Article and Find Full Text PDF