We present a new strategy to form thickness-adjusted and ultrasmooth films of very large and unwrinkled graphene oxide (GO) flakes through the transfer of both hemispherical and vertical water films stabilized by surfactants. With its versatility in terms of substrate type (including flexible organic substrates) and in terms of flake density (from isolated flakes to continuous and multilayer films), this wafer-scale assembly technique is adapted to a broad range of experiments involving GO and rGO (reduced graphene oxide). We illustrate its use through the evaluation of transparent rGO electrodes.
View Article and Find Full Text PDFHomogeneous two-dimensional structures of CeVO(4) nanowires (NWs) deposited on silicon substrates are obtained by means of the bubble deposition method (BDM). Surface wettability (i.e.
View Article and Find Full Text PDFThe self-assembling properties of surfactant black films are used to obtain sizeable, dense islands of nanoparticles. Using the "Bubble Deposition Method" (BDM) these films are transferred onto solid substrates. The organisation within the islands evolves when the films are allowed to equilibrate before deposition.
View Article and Find Full Text PDFTwo-dimensional silica nanoparticle assemblies were obtained by deposition of bubble made from a surfactant solution containing nanoparticles onto hydrophobic silicon substrate. The morphologies of the nanoparticle assemblies can be finely controlled by several experimental parameters, including surfactant concentration, nanoparticle concentration, and deposition time. Monolayer of nanoparticles with surface coverage of about 100% can be obtained under appropriate conditions.
View Article and Find Full Text PDF