Publications by authors named "J M Ageitos"

Synthesis and purification of metal clusters without strong binding agents by wet chemical methods are very attractive for their potential applications in many research areas. However, especially challenging is the separation of uncharged clusters with only a few number of atoms, which renders the usual techniques very difficult to apply. Herein, we report the first efficient separation of Ag and Ag clusters using the different entropic driving forces when such clusters interact with DNA, into which Ag selectively intercalates.

View Article and Find Full Text PDF

Pollen grains are natural microcapsules comprised of the biopolymer sporopollenin. The uniformity and special tridimensional architecture of these sporopollenin structures confer them attractive properties such as high resistance and improved bioadhesion. However, natural pollen can be a source of allergens, hindering its biomedical applicability.

View Article and Find Full Text PDF

Antivirals are compounds used since the 1960s that can interfere with viral development. Some of these antivirals can be isolated from a variety of sources, such as animals, plants, bacteria or fungi, while others must be obtained by chemical synthesis, either designed or random. Antivirals display a variety of mechanisms of action, and while some of them enhance the animal immune system, others block a specific enzyme or a particular step in the viral replication cycle.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are short peptidic molecules produced by most living creatures. They help unicellular organisms to successfully compete for nutrients with other organisms sharing their biological niche, while AMPs form part of the immune system of multicellular creatures. Thus, these molecules represent biological weapons that have evolved over millions of years as a result of an escalating arms race for survival among living organisms.

View Article and Find Full Text PDF

The chemoenzymatic polymerization of amino acid monomers by proteases involves a two-step reaction: the formation of a covalent acyl-intermediate complex between the protease and the carboxyl ester group of the monomer and the subsequent deacylation of the complex by aminolysis to form a peptide bond. Although the initiation with the ester group of the monomer is an important step, the influence of the ester group on the polymerization has not been studied in detail. Herein, we studied the effect of the ester groups (methyl, ethyl, benzyl, and tert-butyl esters) of alanine and glycine on the synthesis of peptides using papain as the catalyst.

View Article and Find Full Text PDF