The consumption of healthy food, in order to strengthen the immune system, is now a major focus of people worldwide and is essential to tackle the emerging pandemic concerns. Moreover, research in this area paves the way for diversification of human diets by incorporating underutilized crops which are highly nutritious and climate-resilient in nature. However, although the consumption of healthy foods increases nutritional uptake, the bioavailability of nutrients and their absorption from foods also play an essential role in curbing malnutrition in developing countries.
View Article and Find Full Text PDFNatural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants.
View Article and Find Full Text PDFPhytic acid is a ubiquitous compound that chelates the micronutrients in food and hinder their absorption. Hence, breeding for low phytate content for producing stable low phytic acid () hybrids is essential. Phytic acid content in maize grains has been found to vary across environments and its stable expression has yet to be explored.
View Article and Find Full Text PDFPhytic acid (Myoinositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is a ubiquitous compound present in plants. It is an important constituent in seed reducing the bioavailability of phosphorous and mineral nutrients when fed to monogastric animals like swine, poultry, fish etc. Hence, identification of maize germplasm with reduced phytic acid content is imperative to formulate the breeding programs to evolve low phytate lines.
View Article and Find Full Text PDF