Publications by authors named "J Lyall"

Platforms have long been implemented for downstream process development of monoclonal antibodies (mAbs) to streamline development and reduce timelines. These platforms are also increasingly being used for other complex biologics modalities. While development has traditionally been conducted at the lab bench scale in a sequential manner, automated miniaturized and parallelized approaches like RoboColumns and resin plates have also been implemented for chromatographic screening.

View Article and Find Full Text PDF

While high-throughput (HT) experimentation and mechanistic modeling have long been employed in chromatographic process development, it remains unclear how these techniques should be used in concert within development workflows. In this work, a process development workflow based on HT experiments and mechanistic modeling was constructed. The integration of HT and modeling approaches offers improved workflow efficiency and speed.

View Article and Find Full Text PDF

The fifth modeling workshop (5MW) was held in June 2023 at Favrholm, Denmark and sponsored by Recovery of Biological Products Conference Series. The goal of the workshop was to assemble modeling practitioners to review and discuss the current state, progress since the last fourth mini modeling workshop (4MMW), gaps and opportunities for development, deployment and maintenance of models in bioprocess applications. Areas of focus were four categories: biophysics and molecular modeling, mechanistic modeling, computational fluid dynamics (CFD) and plant modeling.

View Article and Find Full Text PDF

In this work, we have examined an array of isotherm formalisms and characterized them based on their relative complexities and predictive abilities with multimodal chromatography. The set of isotherm models studied were all based on the stoichiometric displacement framework, with considerations for electrostatic interactions, hydrophobic interactions, and thermodynamic activities. Isotherm parameters for each model were first determined through twenty repeated fits to a set of mAb - Capto MMC batch isotherm data spanning a range of loading, ionic strength, and pH as well as a set of mAb - Capto Adhere batch data at constant pH.

View Article and Find Full Text PDF