Publications by authors named "J Lundbom"

Preterm birth at very low birth weight (VLBW, < 1500 g) is associated with an accumulation of cardiovascular and metabolic risk factors from childhood at least to middle age. Small-scale studies suggest that this could partly be explained by increased visceral or ectopic fat. We performed magnetic resonance imaging on 78 adults born preterm at VLBW in Finland between 1978 and 1990 and 72 term same-sex siblings as controls, with a mean age of 29 years.

View Article and Find Full Text PDF

Adipose tissue is a central regulator of metabolic health and its failure in obesity is a major cause of weight associated comorbidities, such as type 2 diabetes. Many extracellular matrix proteins, represented by matrisome, play a critical role in balancing adipose tissue health and dysfunction. Extracellular matrix components, produced by different cell types of adipose tissue, can modulate adipocyte function, tissue remodeling during expansion, angiogenesis, and inflammation and also form fibrotic lesions in the tissue.

View Article and Find Full Text PDF

Integrase inhibitors appear to increase body weight, but paradoxically some data indicate that raltegravir (RAL) may decrease liver fat. Our objective was to study the effects of switching from a protease inhibitor (PI) or efavirenz (EFV) to RAL on liver fat, body composition, and metabolic parameters among people living with HIV (PLWH) with high risk for nonalcoholic fatty liver disease (NAFLD). We randomized overweight PLWH with signs of metabolic syndrome to switch a PI or EFV to RAL ( = 19) or to continue unchanged antiretroviral therapy (control,  = 24) for 24 weeks.

View Article and Find Full Text PDF

Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle.

View Article and Find Full Text PDF

Objective: F13A1/FXIII-A transglutaminase has been linked to adipogenesis in cells and to obesity in humans and mice, however, its role and associated molecular pathways in human acquired excess weight have not been explored.

Methods: We examined F13A1 expression and association to human weight gain in weight-discordant monozygotic twins (Heavy-Lean difference (ΔWeight, 16.8 kg ± 7.

View Article and Find Full Text PDF