Coiled coils are a common protein structural motif involved in cellular functions ranging from mediating protein-protein interactions to facilitating processes such as signal transduction or regulation of gene expression. They are formed by two or more alpha helices that wind around a central axis to form a buried hydrophobic core. Various forms of coiled-coil bundles have been reported, each characterized by the number, orientation, and degree of winding of the constituent helices.
View Article and Find Full Text PDFThis article addresses manufacturing structures made via injection molding from biodegradable materials. The mentioned structures can be successfully used as energy-absorbing liners of all kinds of sports helmets, replacing the previously used expanded polystyrene. This paper is focused on injection technological tests and tensile tests (in quasi-static and dynamic conditions) of several composites based on a PLA matrix with the addition of other biodegradable softening agents, such as PBAT and TPS (the blends were prepared via melt blending using a screw extruder with mass compositions of 50:50, 30:70, and 15:85).
View Article and Find Full Text PDFIn this study, we present a conformational landscape of 5000 AlphaFold2 models of the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) domain, a short helical bundle that transduces signals from sensors to effectors in two-component signaling proteins such as sensory histidine kinases and chemoreceptors. The landscape reveals the conformational variability of the HAMP domain, including rotations, shifts, displacements, and tilts of helices, many combinations of which have not been observed in experimental structures. HAMP domains belonging to a single family tend to occupy a defined region of the landscape, even when their sequence similarity is low, suggesting that individual HAMP families have evolved to operate in a specific conformational range.
View Article and Find Full Text PDFMotivation: The detection of homology through sequence comparison is a typical first step in the study of protein function and evolution. In this work, we explore the applicability of protein language models to this task.
Results: We introduce pLM-BLAST, a tool inspired by BLAST, that detects distant homology by comparing single-sequence representations (embeddings) derived from a protein language model, ProtT5.
Bio-based plasticizers derived from renewable resources represent a sustainable replacement for petrochemical-based plasticizers. Vegetable oils are widely available, non-toxic and biodegradable, resistant to evaporation, mostly colorless and stable to light and heat, and are a suitable alternative for phthalate plasticizers. Plasticized poly(lactic acid) (PLA) materials containing 5 wt%, 10 wt%, 15 wt% and 20 wt% natural castor oil (R) were prepared by melt blending to improve the ductility of PLA.
View Article and Find Full Text PDF