Colloids Surf B Biointerfaces
November 2017
The interactions between two cationic lysosomotropic surfactants (2-dodecanoyloxyethyl)trimethylammonium bromide (DMM-11) and (2-dodecanoyloxypropyl)trimethylammonium bromide (DMPM-11) with bovine serum albumin (BSA) in Hepes buffer (pH=7.4) were systematically studied by surface tension, fluorescence and circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC). Furthermore, the size of the micellar aggregates and the polydispersity indexes of both cationic surfactants were studied by dynamic light scattering technique (DLS).
View Article and Find Full Text PDFHypothesis: Surface activity of selected cleavable esterquat cationic surfactants is determined by the synergistic effect of surface active products of their hydrolysis.
Experiments: Interfacial behavior of two classes of esterquat surfactants, quaternary alkylammmoniumesters and amino acid betaine (trimethylglycine) esters of fatty acids were examined both experimentally and theoretically. The surface tension measurements at air/water interface were performed by the pendant drop shape analysis method, then the obtained isotherms were theoretically described by the model of adsorption of ionic/non-ionic surfactants mixtures taking into account the presence of surface active products of surfactant hydrolysis.
A series of gemini quaternary ammonium chlorides and bromides with various alkyl chain and spacer lengths was synthesized. The most active compounds against fungi were chlorides with 10 carbon atoms within the hydrophobic chain. Among these compounds were few with no hemolytic activity at minimal inhibitory concentrations.
View Article and Find Full Text PDFCationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability.
View Article and Find Full Text PDFAdv Colloid Interface Sci
October 2009
Equilibrium adsorption at the air/water interface of cationic surfactants belonging in the group of quaternary ammonium bromides was studied. Quaternary ammonium salts, derivatives of lysosomotropic substances with different alkyl chain numbers and hydrophobicities were investigated. Surface properties of considered compounds, were examined and presented against other quaternary ammonium bromides of different chemical structure and with different number of alkyl chains in the molecule.
View Article and Find Full Text PDF