Objective: Reverse cholesterol transport (RCT) can be defined as a pathway of flux of cholesterol from peripheral tissues to the liver for potential excretion into feces. This prospective, placebo-controlled, double-blind crossover study assessed the effect of ezetimibe on several RCT parameters in hyperlipidemic patients.
Methods: Following 7 weeks of treatment (ezetimibe 10 mg/day or placebo), 26 patients received 24-h continuous IV infusions of [3,4-(13)C2]-cholesterol, then took heavy water ((2)H2O) by mouth.
Objective: The HDL associated apolipoprotein M (apoM) protects against experimental atherosclerosis but the mechanism is unknown. ApoM increases prebeta-HDL formation. We explored whether plasma apoM affects mobilization of cholesterol from peripheral cells in mice.
View Article and Find Full Text PDFAtheroprotection by high density lipoprotein (HDL) is considered to be mediated through reverse cholesterol transport (RCT) from peripheral tissues. We investigated in vivo cholesterol fluxes through the RCT pathway in patients with low plasma high density lipoprotein cholesterol (HDL-c) due to mutations in APOA1. Seven carriers of the L202P mutation in APOA1 (mean HDL-c: 20 ± 19 mg/dl) and seven unaffected controls (mean HDL-c: 54 ± 11 mg/dl, P < 0.
View Article and Find Full Text PDFBackground: Reverse cholesterol transport from peripheral tissues is considered the principal atheroprotective mechanism of high-density lipoprotein, but quantifying reverse cholesterol transport in humans in vivo remains a challenge. We describe here a method for measuring flux of cholesterol though 3 primary components of the reverse cholesterol transport pathway in vivo in humans: tissue free cholesterol (FC) efflux, esterification of FC in plasma, and fecal sterol excretion of plasma-derived FC.
Methods And Results: A constant infusion of [2,3-(13)C(2)]-cholesterol was administered to healthy volunteers.