Publications by authors named "J Lubkowski"

Phosphopentomutases catalyze the isomerization of ribose 1-phosphate and ribose 5-phosphate. , a hyperthermophilic archaeon, harbors a novel enzyme (PPM) that exhibits high homology with phosphohexomutases but has no significant phosphohexomutase activity. Instead, PPM catalyzes the interconversion of ribose 1-phosphate and ribose 5-phosphate.

View Article and Find Full Text PDF
Article Synopsis
  • * Despite rigorous validation, some entries in the PDB, which contains about 215,000 structures, may have inaccuracies, necessitating careful checks for medically relevant data.
  • * This study focused on the structural analysis of L-asparaginases, important enzymes related to leukemia treatments, evaluating their adherence to stereochemistry and experimental electron-density maps, highlighting a growing interest in various structural classes of these enzymes.
View Article and Find Full Text PDF

L-Asparaginases (ASNases) catalyze the hydrolysis of L-Asn to L-Asp and ammonia. Members of the ASNase family are used as drugs in the treatment of leukemia, as well as in the food industry. The protomers of bacterial ASNases typically contain 300-400 amino acids (typical class 1 ASNases).

View Article and Find Full Text PDF

Post-translational modification of proteins with polyubiquitin chains is a critical cellular signaling mechanism in eukaryotes with implications in various cellular states and processes. Unregulated ubiquitin-mediated protein degradation can be detrimental to cellular homeostasis, causing numerous diseases including cancers. Recently, macrocyclic peptides were developed that selectively target long Lysine-48-linked polyubiquitin chains (tetra-ubiquitin) to inhibit ubiquitin-proteasome system, leading to attenuation of tumor growth in vivo.

View Article and Find Full Text PDF

Bacterial L-asparaginases have been used for over 40 years as anticancer drugs. Ardalan et al. (Medical Hypotheses 112, 7-17, 2018) proposed that the V27T mutant of Escherichia coli type II L-asparaginase, EcAII(V27T), should display altered biophysical and catalytic properties compared to the wild-type enzyme, EcAII(wt), rendering it more favourable as a pharmaceutical.

View Article and Find Full Text PDF