Publications by authors named "J Lotze"

Internalization and intracellular trafficking of G protein-coupled receptors (GPCR) plays an important role in the signal transduction. These processes are often highly dynamic and take place rapidly. In the past 10 years, it became obvious that internalized GPCRs are also capable of signaling via arrestin or heterotrimeric G proteins within the endosomal compartment.

View Article and Find Full Text PDF

Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide-peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.

View Article and Find Full Text PDF

Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function.

View Article and Find Full Text PDF

The development of a method is described for the chemical labeling of proteins which occurs with high target specificity, proceeds within seconds to minutes, and offers a free choice of the reporter group. The method relies upon the use of peptide templates, which align a thioester and an N-terminal cysteinyl residue such that an acyl transfer reaction is facilitated at nanomolar concentrations. The protein of interest is N-terminally tagged with a 22 aa long Cys-E3 peptide (acceptor), which is capable of forming a coiled-coil with a reporter-armed K3 peptide (donor).

View Article and Find Full Text PDF

We perform a quantitative, comparative study of the spin pumping, spin Seebeck, and spin Hall magnetoresistance effects, all detected via the inverse spin Hall effect in a series of over 20 yttrium iron garnet/Pt samples. Our experimental results fully support present, exclusively spin current-based, theoretical models using a single set of plausible parameters for spin mixing conductance, spin Hall angle, and spin diffusion length. Our findings establish the purely spintronic nature of the aforementioned effects and provide a quantitative description, in particular, of the spin Seebeck effect.

View Article and Find Full Text PDF