Publications by authors named "J Lof"

Article Synopsis
  • Acoustically activated perfluoropropane droplets (PD) are used to enhance imaging of heart tissue, particularly in infarct zones, but their activation can be influenced by body temperature (BT).
  • The study analyzed the effects of BT during intravenous injection of PDs in rats, comparing temperatures above and below 36.5°C on myocardial contrast intensity (MCI) and microvascular retention.
  • Results showed that lower BT (<36.5°C) led to effective MCI enhancement in infarct zones, while higher BT inhibited activation and resulted in adverse effects on lung tissue.
View Article and Find Full Text PDF

Background: Acoustically activatable perfluoropropane droplets (PD) can be formulated from commercially available microbubble preparations. Diagnostic transthoracic ultrasound frequencies have resulted in acoustic activation (AA) predominately within myocardial infarct zones (IZ).

Objective: We hypothesized that the AA area following acute coronary ischemia/reperfusion (I/R) would selectively enhance the developing scar zone, and target bioeffects specifically to this region.

View Article and Find Full Text PDF

Perfluoropropane droplets (PDs) cross endothelial barriers and can be acoustically activated for selective myocardial extravascular enhancement following intravenous injection (IVI). Our objective was to determine how to optimally activate extravascular PDs for transthoracic ultrasound-enhanced delineation of a developing scar zone (DSZ). Ultrafast-frame-rate microscopy was conducted to determine the effect of pulse sequence on the threshold of bubble formation from PDs.

View Article and Find Full Text PDF

Obesity is a complex disease with many co-morbidities, including impaired cognitive functions. Obese individuals often contain an aberrant microbiota. Via the microbiota-gut-brain axis, the altered microbiota composition can affect cognition or induce anxiety- or depressive-like behavior.

View Article and Find Full Text PDF

Background: Ventricular interdependence may account for altered ventricular mechanics in congenital heart disease. The present study aimed to identify differences in load-dependent right ventricular (RV)-left ventricular (LV) interactions in porcine models of pulmonary stenosis (PS) and pulmonary insufficiency (PI) by invasive admittance-derived hemodynamics in conjunction with noninvasive cardiovascular magnetic resonance (CMR).

Methods: Seventeen pigs were used in the study (7 with PS, 7 with PI, and 3 controls).

View Article and Find Full Text PDF