Publications by authors named "J Lodewyck"

We propose a multimeasurement estimation protocol for quantum nondemolition (QND) measurements in a Rabi clock interferometer. The method is well suited for current state-of-the-art optical lattice clocks with QND measurement capabilities. The protocol exploits the correlations between multiple nondestructive measurements of the initially prepared coherent spin state.

View Article and Find Full Text PDF

We report on the first Earth-scale quantum sensor network based on optical atomic clocks aimed at dark matter (DM) detection. Exploiting differences in the susceptibilities to the fine-structure constant of essential parts of an optical atomic clock, i.e.

View Article and Find Full Text PDF

Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.

View Article and Find Full Text PDF

The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.

View Article and Find Full Text PDF

Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer.

View Article and Find Full Text PDF