Publications by authors named "J Lococo"

Next-generation sequencing (NGS) has revolutionized genomic research by enabling high-throughput, cost-effective genome and transcriptome sequencing accelerating personalized medicine for complex diseases, including cancer. Whole genome/transcriptome sequencing (WGS/WTS) provides comprehensive insights, while targeted sequencing is more cost-effective and sensitive. In comparison to short-read sequencing, which still dominates the field due to high speed and cost-effectiveness, long-read sequencing can overcome alignment limitations and better discriminate similar sequences from alternative transcripts or repetitive regions.

View Article and Find Full Text PDF
Article Synopsis
  • Clinical laboratories use FFPE samples in cancer sequencing to detect mutations for targeted therapy, but these samples can suffer from technical errors due to the processing method.* -
  • A study involved creating FFPE samples with different fixation times, revealing that samples with low cellularity and improper DNA input are more likely to fail in sequencing.* -
  • The findings suggest avoiding the surface of the block for testing and focusing on reliable genomic areas to improve mutation detection accuracy.*
View Article and Find Full Text PDF

The primary objective of the FDA-led Sequencing and Quality Control Phase 2 (SEQC2) project is to develop standard analysis protocols and quality control metrics for use in DNA testing to enhance scientific research and precision medicine. This study reports a targeted next-generation sequencing (NGS) method that will enable more accurate detection of actionable mutations in circulating tumor DNA (ctDNA) clinical specimens. To accomplish this, a synthetic internal standard spike-in was designed for each actionable mutation target, suitable for use in NGS following hybrid capture enrichment and unique molecular index (UMI) or non-UMI library preparation.

View Article and Find Full Text PDF

Background: Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples.

View Article and Find Full Text PDF