Very high-average optical enhancement cavities (OECs) are being used both in fundamental and applied research. The most demanding applications require stable megawatt level average power of infrared picosecond pulses with repetition rates of several tens of MHz. Toward reaching this goal, we report on the achievement of 710 kW of stable average power in a two-mirror hemispherical optical enhancement cavity.
View Article and Find Full Text PDFProtonated mixed pyrene-water clusters, (Py)(HO)H, where = [1-3] and = [1-10], are generated using a cryogenic molecular cluster source. Subsequently, the mass-selected mixed clusters undergo controlled collisions with rare gases, and the resulting fragmentation mass spectra are meticulously analyzed to discern distinct fragmentation channels. Notably, protonated water cluster fragments emerge for ≥ 3, whereas they are absent for = 1 and 2.
View Article and Find Full Text PDFWe report threshold collision induced dissociation experiments on protonated water clusters thermalized at low temperature for sizes n = 19-23. Fragmentation cross sections are recorded as a function of the collision energy and analyzed with a statistical model. This model allows us to account for dissociation cascades and provides values for the dissociation energies of each cluster.
View Article and Find Full Text PDFWe report measurements of the attachment rates of water molecules onto mass-selected cationic pyrene clusters for size from = 4 to 13 pyrene units and for different collision energies. Comparison of the attachment rates with the collision rates measured in collision-induced dissociation experiments provides access to the values of the sticking coefficient. The strong dependence of the attachment rates on size and collision energy is rationalized through a model in which we use a Langevin-type collision rate and adjust on experimental data the statistical dissociation rate of the water molecule from the cluster after attachment.
View Article and Find Full Text PDFDirect laser slab face-cooling by a fluid crossing the main and pump laser beams is an important method to reach high average laser powers. However, the flow regime is usually maintained at low Reynolds numbers to prevent the onset of turbulence features in the flow that would degrade the wavefront quality. We show here how bringing the fluid temperature to the thermo-optical null point, close to the water/ice transition in the case of water, allows one to mitigate the optical consequences of hydrodynamic instabilities, by bleaching optically the temperature inhomogeneities within the flow.
View Article and Find Full Text PDF