Identification of the causative mutations in patients affected by autosomal recessive non syndromic deafness (DFNB forms), is demanding due to genetic heterogeneity. After the exclusion of GJB2 mutations and other mutations previously reported in Tunisian deaf patients, we performed whole exome sequencing in patients affected with severe to profound deafness, from four unrelated consanguineous Tunisian families. Four biallelic non previously reported mutations were identified in three different genes: a nonsense mutation, c.
View Article and Find Full Text PDFBackground: Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling.
View Article and Find Full Text PDFKallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases.
View Article and Find Full Text PDFThis article outlines recent advances in explaining hereditary deafness in molecular terms, focusing on isolated (i.e. nonsyndromic) hearing loss.
View Article and Find Full Text PDFWe took advantage of overlapping interstitial deletions at chromosome 8p11-p12 in two individuals with contiguous gene syndromes and defined an interval of roughly 540 kb associated with a dominant form of Kallmann syndrome, KAL2. We establish here that loss-of-function mutations in FGFR1 underlie KAL2 whereas a gain-of-function mutation in FGFR1 has been shown to cause a form of craniosynostosis. Moreover, we suggest that the KAL1 gene product, the extracellular matrix protein anosmin-1, is involved in FGF signaling and propose that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X inactivation) explains the higher prevalence of the disease in males.
View Article and Find Full Text PDF