Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation.
View Article and Find Full Text PDFIn recent years, multicomponent hydrogels such as interpenetrating polymer networks (IPNs) have emerged as innovative biomaterials due to the synergistic combination of the properties of each network. We hypothesized that an innovative non-animal IPN hydrogel combining self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) with photochemically cross-linkable dextran methacrylate (DexMA) could be a valid alternative to porcine collagen membranes in guided bone regeneration. Calvaria critical-size defects in rabbits were filled with synthetic biphasic calcium phosphate granules in conjunction with Si-HPMC; DexMA; or Si-HPMC/DexMA experimental membranes; and in a control group with a porcine collagen membrane.
View Article and Find Full Text PDFAn easy, reliable, and time-efficient standardized approach for assessing lumbar intervertebral disc (IVD) degeneration with relaxation times measurements in pre-clinical and clinical studies is lacking. This prospective study aims to determine the most appropriate method for lumbar IVD degeneration (IDD) assessment in sheep by comparing three quantitative MRI sequences (variable-flip-angle T1 mapping, and multi-echo T2 and T2* mapping), correlating them with Pfirrmann grading and histology. Strong intra- and interrater agreements were found for Nucleus pulposus (NP) regions-of-interest (ROI).
View Article and Find Full Text PDFOsteoarthritis Cartilage
June 2022
Objective: In light of the role of immune cells in OA pathogenesis, the development of sophisticated animal models closely mimicking the immune dysregulation during the disease development and progression could be instrumental for the preclinical evaluation of novel treatments. Among these models, immunologically humanized mice may represent a relevant system, particularly for testing immune-interacting DMOADs or cell therapies before their transfer to the clinic. Our objective, therefore, was to develop an experimental model of OA by destabilization of the medial meniscus (DMM) in humanized mice.
View Article and Find Full Text PDFObjectives: Osteoarthritis is a painful joint disease responsible for walking impairment. Its quantitative assessment by gait analysis in mice may be a relevant and noninvasive strategy to assess the disease severity. In this study, we aimed to determine the severity of osteoarthritis at the tissular and gait levels in unilateral and bilateral posttraumatic murine osteoarthritis.
View Article and Find Full Text PDF