Publications by authors named "J Leskovec"

Genome-wide association studies (GWASs) have identified tens of thousands of disease associated variants and provided critical insights into developing effective treatments. However, limited sample sizes have hindered the discovery of variants for uncommon and rare diseases. Here, we introduce KGWAS, a novel geometric deep learning method that leverages a massive functional knowledge graph across variants and genes to improve detection power in small-cohort GWASs significantly.

View Article and Find Full Text PDF
Article Synopsis
  • Cells are crucial for studying health and diseases, but traditional models are limited in their ability to accurately represent cell function and behavior.
  • Advances in AI and omics technology enable the development of AI virtual cells (AIVCs), complex models that simulate molecular, cellular, and tissue behavior across various conditions.
  • The creation of AIVCs aims to enhance biological research by allowing detailed simulations, speeding up discoveries, and promoting collaborative and interdisciplinary approaches in open scientific research.
View Article and Find Full Text PDF

This study investigated the individual and combined effects of a high dietary n-3 PUFA intake and cyclic heat stress (HS) on the carcass characteristics, meat quality, and oxidative stability of broiler breast meat and the potential of antioxidant supplementation (vitamins E, C, and selenium) to mitigate these effects. A total of 192 one-day-old male Ross 308 broilers were randomly assigned to 24 pens within two controlled environment chambers and fed with the following diets: a basal diet low in antioxidants according to NRC recommendations (NRC group), a basal diet according to Aviagen recommendations additionally supplemented with 200 IU/kg vitamin E, 250 mg/kg vitamin C, and 0.15 mg/kg selenium (HAOX group), and these two diets further supplemented with 5% linseed oil (NRC N-3 and HAOX N-3 groups).

View Article and Find Full Text PDF

The cell is arguably the most fundamental unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intelligence (AI), combined with the ability to generate large-scale experimental data, present novel opportunities to model cells.

View Article and Find Full Text PDF

Drug repurposing-identifying new therapeutic uses for approved drugs-is often a serendipitous and opportunistic endeavour to expand the use of drugs for new diseases. The clinical utility of drug-repurposing artificial intelligence (AI) models remains limited because these models focus narrowly on diseases for which some drugs already exist. Here we introduce TxGNN, a graph foundation model for zero-shot drug repurposing, identifying therapeutic candidates even for diseases with limited treatment options or no existing drugs.

View Article and Find Full Text PDF