Publications by authors named "J Leon Catrow"

Lactate is the highest turnover circulating metabolite in mammals. While traditionally viewed as a waste product, lactate is an important energy source for many organs, but first must be oxidized to pyruvate for entry into the tricarboxylic acid cycle (TCA cycle). This reaction is thought to occur in the cytosol, with pyruvate subsequently transported into mitochondria via the mitochondrial pyruvate carrier (MPC).

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disorder marked by lipid accumulation, leading to steatohepatitis (MASH). A key feature of the transition to MASH involves oxidative stress resulting from defects in mitochondrial oxidative phosphorylation (OXPHOS). Here, we show that pathological alterations in the lipid composition of the inner mitochondrial membrane (IMM) directly instigate electron transfer inefficiency to promote oxidative stress.

View Article and Find Full Text PDF

L-368,899 is a selective small-molecule oxytocin receptor (OXTR) antagonist originally developed in the 1990s to prevent preterm labor. Although its utility for that purpose was limited, L-368,899 is now one of the most commonly used drugs in animal research for the selective blockade of neural OXTR after peripheral delivery. A growing number of rodent and primate studies have used L-368,899 to evaluate whether certain behaviors are oxytocin dependent.

View Article and Find Full Text PDF

Animal cytoplasmic fatty acid synthase (FAS) represents a unique family of enzymes that are classically thought to be most closely related to fungal polyketide synthase (PKS). Recently, a widespread family of animal lipid metabolic enzymes has been described that bridges the gap between these two ubiquitous and important enzyme classes: the animal FAS-like PKSs (AFPKs). Although very similar in sequence to FAS enzymes that produce saturated lipids widely found in animals, AFPKs instead produce structurally diverse compounds that resemble bioactive polyketides.

View Article and Find Full Text PDF
Article Synopsis
  • Abcb10 is a mitochondrial protein crucial for transporting biliverdin, which is essential for the formation of hemoglobin in red blood cells.
  • Deleting Abcb10 in both mouse and human erythroid cells led to failure in hemoglobinization, lower heme levels, and impaired arginine metabolism, resulting in decreased cell proliferation.
  • The study highlights how Abcb10 loss activates stress responses that hinder protein synthesis, ultimately affecting nutrient sensing and leading to further reductions in cell growth and hemoglobin production.
View Article and Find Full Text PDF