Publications by authors named "J Lengiewicz"

Being able to reposition tumors from prone imaging to supine surgery stances is key for bypassing current invasive marking used for conservative breast surgery. This study aims to demonstrate the feasibility of using Digital Volume Correlation (DVC) to measure the deformation of a female quarter thorax between two different body positioning when subjected to gravity. A segmented multipart mesh (bones, cartilage and tissue) was constructed and a three-step FE-based DVC procedure with heterogeneous elastic regularization was implemented.

View Article and Find Full Text PDF

Background And Objective: This contribution presents a rapid computational framework to mechanically simulate the insertion of a slender medical instrument in a tubular structure such as an artery, the cochlea or another slender instrument.

Methods: Beams are employed to rapidly simulate the mechanical behaviour of the medical instrument and the tubular structure. However, the framework's novelty is its capability to handle the mechanical contact between an inner beam (representing the medical instrument) embedded in a hollow outer beam (representing the tubular structure).

View Article and Find Full Text PDF

Due to its multifactorial nature, skin friction remains a multiphysics and multiscale phenomenon poorly understood despite its relevance for many biomedical and engineering applications (from superficial pressure ulcers, through shaving and cosmetics, to automotive safety and sports equipment). For example, it is unclear whether, and in which measure, the skin microscopic surface topography, internal microstructure and associated nonlinear mechanics can condition and modulate skin friction. This study addressed this question through the development of a parametric finite element contact homogenisation procedure which was used to study and quantify the effect of the skin microstructure on the skin frictional response.

View Article and Find Full Text PDF