Skeletal muscle turnover helps support the physiological needs of dairy cows during the transition into lactation. We evaluated effects of feeding ethyl-cellulose rumen-protected methionine (RPM) during the periparturient period on abundance of proteins associated with transport AA and glucose, protein turnover, metabolism, and antioxidant pathways in skeletal muscle. Sixty multiparous Holstein cows were used in a block design and assigned to a control or RPM diet from -28 to 60 d in milk.
View Article and Find Full Text PDFData from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used.
View Article and Find Full Text PDFPhysiological and environmental stresses such as the transition into lactation and heat load contribute to gastrointestinal tract (GIT) dysfunction. The nonruminant gastrointestinal tract has mechanisms to cope with pro-oxidant and pro-inflammatory stressors arising from the gut lumen or within intestinal cells. One-carbon metabolism (OCM) contributes to anti-oxidant capacity via the production of glutathione (GSH) and taurine, and the synthesis of phospholipid, creatine, and the osmolyte glycinebetaine among others.
View Article and Find Full Text PDF