(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses.
View Article and Find Full Text PDFKetamine, a non-competitive antagonist of the N-methyl-D-aspartate-glutamate receptor (R-NMDA), has a rapid (from 24 h post-dose) and prolonged (up to one week) antidepressant effect in treatment resistant depression and in rodent models of anxiety/depression. Arguments regarding its cellular and molecular mechanisms underlying its antidepressant activity mainly come from animal studies. However, debates still persist on the structural remodeling of frontocortical/hippocampal neurons and the role of excitatory/inhibitory neurotransmitters involved in its behavioral effect.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a serious public health problem, as it is the most common psychiatric disorder worldwide. Antidepressant drugs increase adult hippocampal neurogenesis, which is required to induce some behavioral effects of antidepressants. Adult-born granule cells in the dentate gyrus (DG) and the glutamate receptors subunits 2 (GluN2B) subunit of N-methyl-D-aspartate (NMDA) ionotropic receptors play an important role in these effects.
View Article and Find Full Text PDF