RNA methylation is a metabolic process validated for its association with various diseases, and thus, RNA methyltransferases (MTases) have become increasingly important in drug discovery. Yet, most frequently utilized RNA MTase assays are limited in their throughput and hamper this rapidly evolving field of medicinal chemistry. In this study, we describe a modular nanomole scale building block system that allowed the identification of tailored fluorescent MTase probes to unlock a broad selection of MTase drug targets for fluorescence-based binding assays.
View Article and Find Full Text PDFCovalent peptidomimetic protease inhibitors have gained a lot of attention in drug development in recent years. They are designed to covalently bind the catalytically active amino acids through electrophilic groups called warheads. Covalent inhibition has an advantage in terms of pharmacodynamic properties but can also bear toxicity risks due to non-selective off-target protein binding.
View Article and Find Full Text PDFDeveloping methyltransferase inhibitors is challenging, since most of the currently used assays are time-consuming and cost-intensive. Therefore, efficient, fast, and reliable methods for screenings and affinity determinations are of utmost importance. Starting from a literature-known fluorescent -adenosylhomocysteine derivative, 5-FAM-triazolyl-adenosyl-Dab, developed for a fluorescence polarization assay to investigate the histone methyltransferase mixed-lineage leukemia 1, we herein describe the applicability of this compound as a fluorescent tracer for the investigation of DNA-methyltransferase 2 (DNMT2), a human RNA methyltransferase.
View Article and Find Full Text PDFSelective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the -adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established.
View Article and Find Full Text PDF