Publications by authors named "J Lagueux"

Article Synopsis
  • Diffusion cells are essential tools in pharmacology that evaluate how pharmaceuticals and contaminants permeate membranes, with a design that includes a donor and acceptor compartment separated by a membrane.
  • The study developed a novel type of diffusion cell compatible with nuclear imaging, using high-energy photon detection from positron emission tomography (PET) to improve measurement accuracy.
  • The experiment using different cellulose membranes revealed important permeability characteristics of the drug deferoxamine B, including lag time and diffusion coefficients, thereby enhancing understanding of drug release mechanisms.
View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) distributed in the vicinity of low-dose rate (LDR) brachytherapy seeds could multiply their efficacy thanks to the secondary emissions induced by the photoelectric effect. Injections of radioactive LDR gold nanoparticles (LDR Au NPs), instead of conventional millimeter-size radioactive seeds surrounded by Au NPs, could further enhance the dose by distributing the radioactivity more precisely and homogeneously in tumors. However, the potential of LDR Au NPs as an emerging strategy to treat cancer is strongly dependent on the macroscopic diffusion of the NPs in tumors, as well as on their microscopic internalization within the cells.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the leading causes of death among men. Low-dose brachytherapy is an increasingly used treatment for PCa, which requires the implantation of tens of radioactive seeds. This treatment causes discomfort; these implants cannot be removed, and they generate image artifacts.

View Article and Find Full Text PDF

In recent years, pulsed laser ablation in liquids (PLAL) has emerged as a new green chemistry method to produce different types of nanoparticles (NPs). It does not require the use of reducing or stabilizing agents, therefore enabling the synthesis of NPs with highly-pure surfaces. In this study, pure Au NPs were produced by PLAL in aqueous solutions, sterically stabilized using minimal PEG excess, and functionalized with manganese chelates to produce a dual CT/MRI contrast agent.

View Article and Find Full Text PDF

Progresses in cold atmospheric plasma technologies have made possible the synthesis of nanoparticles in aqueous solutions using plasma electrochemistry principles. In this contribution, a reactor based on microhollow cathodes and operating at atmospheric pressure was developed to synthesize iron-based nanoclusters (nanoparticles). Argon plasma discharges are generated at the tip of the microhollow cathodes, which are placed near the surface of an aqueous solution containing iron salts (FeCl2 and FeCl3) and surfactants (biocompatible dextran).

View Article and Find Full Text PDF