Phys Rev E Stat Nonlin Soft Matter Phys
February 2013
With the aim of furthering the explanation of iridescence in Morpho butterflies, we developed an optical model based on the finite-element (FE) method, taking more accurately into account the exact morphology of the wing, origin of iridescence. We modeled the photonic structure of a basal scale of the Morpho rhetenor wing as a three-dimensional object, infinite in one direction, with a shape copied from a TEM image, and made out of a slightly absorbing dielectric material. Periodic boundary conditions were used in the FE method to model the wing periodic structure and perfectly matched layers permitted the free-space scattering computation.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2008
We present a model for calculating the angular distribution of light, including polarization effects from multilayered inhomogeneous media, with an index of refraction mismatch between layers. The model is based on the resolution of the radiative transfer equation by the discrete ordinate method. Comparisons with previous simpler models and examples of simulations are presented.
View Article and Find Full Text PDFAg -TiO2 nanocermet thin films, deposited for optical filtering applications by two sputtering techniques, codeposition and multilayer deposition, exhibit surface plasmon absorption in the spectral range 450 -500 nm. The cosputtering technique induces a columnar growth, whereas multilayer deposition produces a more-random distribution of silver inclusions. Both films have large, flat silver grains at the air -cermet interface.
View Article and Find Full Text PDFAg-TiO(2) nanocermet thin films, deposited for optical filtering applications by two sputtering techniques, codeposition and multilayer deposition, exhibit surface plasmon absorption in the spectral range 450-500 nm. The cosputtering technique induces a columnar growth, whereas multilayer deposition produces a more-random distribution of silver inclusions. Both films have large, flat silver grains at the air-cermet interface.
View Article and Find Full Text PDFThe effects of a pulsed low frequency electromagnetic field were investigated on photoluminescence of well characterized water and prepared under controlled conditions (container, atmospheric, electromagnetic, and acoustic environments). When reference water samples were excited at 260 nm, two wide emission bands centered at 345 nm (3.6 eV) and 425 nm (2.
View Article and Find Full Text PDF