Methods Mol Biol
December 2020
Mammalian nervous tissues are heterogeneous. The retina, brain, spinal cord, and peripheral sensory and autonomic ganglia are each composed of neuronal and glial cell partners embedded in a connective tissue bed and supplied by vascular and immune cells. This complicated structure presents many challenges to neuroscientists and cell biologists (e.
View Article and Find Full Text PDFUnlabelled: The alphaherpesviral envelope protein pUS9 has been shown to play a role in the anterograde axonal transport of herpes simplex virus 1 (HSV-1), yet the molecular mechanism is unknown. To address this, we used an in vitro pulldown assay to define a series of five arginine residues within the conserved pUS9 basic domain that were essential for binding the molecular motor kinesin-1. The mutation of these pUS9 arginine residues to asparagine blocked the binding of both recombinant and native kinesin-1.
View Article and Find Full Text PDFMethods Mol Biol
November 2014
The mammalian retina, brain, spinal cord, and peripheral ganglia are all heterogeneous tissues. Each is composed of neuronal and glial cell partners embedded in a connective tissue bed and supplied by vascular and immune cells. This complicated structure presents many challenges to neuroscientists and cell biologists, e.
View Article and Find Full Text PDFPurpose: How herpes simplex virus (HSV) is transported from the infected neuron cell body to the axon terminal is poorly understood. Several viral proteins are candidates for regulating the process, but the evidence is controversial. We compared the results of Us9 deletions in two HSV strains (F and NS) using a novel quantitative assay to test the hypothesis that the viral protein Us9 regulates the delivery of viral DNA to the distal axon of retinal ganglion cells in vivo.
View Article and Find Full Text PDFMany membranous organelles and protein complexes are normally transported anterograde within axons to the presynaptic terminal, and details of the motors, adaptors and cargoes have received significant attention. Much less is known about the transport in neurons of non-membrane bound particles, such as mRNAs and their associated proteins. We propose that herpes simplex virus type 1 (HSV) can be used to study the detailed mechanisms regulating long distance transport of particles in axons.
View Article and Find Full Text PDF