Publications by authors named "J L Werber"

Selective ion separations are increasingly needed to combat water scarcity, recover resources from wastewater, and enable the efficient recycling of electronics waste. Emulsion liquid membranes (ELMs) have received interest due to rapid kinetics, high selectivities, and low solvent requirements but are too unstable for industrial usage. We demonstrate that polymeric microcapsules can serve as robust, solvent-free mimics of ELMs.

View Article and Find Full Text PDF

Self-assembled polymer nanoparticles have tremendous potential in biomedical and environmental applications. For all applications, tailored polymer chemistries are critical. In this study, we demonstrate a precursor approach in which an activated, organic solvent-soluble block polymer precursor is modified through mild postpolymerization modifications to access new polymer structures.

View Article and Find Full Text PDF

Reliable and equitable access to safe drinking water is a major and growing challenge worldwide. Membrane separations represent one of the most promising strategies for the energy-efficient purification of potential water sources. In particular, porous membranes are used for the ultrafiltration (UF) of water to remove contaminants with nanometric sizes.

View Article and Find Full Text PDF

Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure-property-performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions.

View Article and Find Full Text PDF

Highly selective and water permeable dual-layer ultrafiltration (UF) membranes comprising a disordered poly(methyl methacrylate--styrene)--poly(lactide) selective layer and a polysulfone (PSF) support layer were fabricated using a co-casting technique. A dilute solution of diblock polymer was spin coated onto a solvent-swollen PSF layer, rapidly heated to dry and disorder the block polymer layer, and subsequently immersed into an ice water coagulation bath to kinetically trap the disordered state in the block polymer selective layer and precipitate the support layer by nonsolvent-induced phase separation. Subsequent removal of the polylactide block generated porous membranes suitable for UF.

View Article and Find Full Text PDF