In this study we investigate on the possible use of a new kind of magnetic nanostructures as drug delivery systems for anticancer drugs. The starting particles are formed by an inner core of iron, coated by magnetite as a stabilizing, magnetic layer. These units are further coated by a poly(ethylenglycol) (PEG) layer to make them less prone to the attack by macrophages and to favour longer stays in the blood stream.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2015
In this work, we investigate a route towards the synthesis of multi-functionalized nanoparticles for medical purposes. The aim is to produce magnetite/gold (Fe3O4/Au) nanoparticles combining several complementary properties, specifically, being able to carry simultaneously an antitumor drug and a selected antibody chosen so as to improve specificity of the drug vehicle. The procedure included, firstly, the preparation of Fe3O4 cores coated with Au nanoparticles: this was achieved by using initially the layer-by-layer technique in order to coat the magnetite particles with a three polyelectrolyte (cationic-anionic-cationic) layer.
View Article and Find Full Text PDFPLoS One
June 2014
This study analyses the evolution of liver disease in women with chronic hepatitis C during the third trimester of pregnancy and the post-partum period, as a natural model of immune modulation and reconstitution. Of the 122 mothers recruited to this study, 89 were HCV-RNA+ve/HIV-ve and 33 were HCV-RNA-ve/HIV-ve/HCVantibody+ve and all were tested during the third trimester of pregnancy, at delivery and post-delivery. The HCV-RNA+ve mothers were categorized as either Type-A (66%), with an increase in ALT levels in the post-partum period (>40 U/L; P<0.
View Article and Find Full Text PDFGemcitabine is a chemotherapy drug used in different carcinomas, although because it displays a short biological half-life, its plasmatic levels can quickly drop below the effective threshold. Nanoparticle-based drug delivery systems can provide an alternative approach for regulating the bioavailability of this and most other anticancer drugs. In this work we describe a new model of composite nanoparticles consisting of a core of magnetite nanoparticles, coated with successive layers of high molecular weight poly(acrylic acid) and chitosan, and a final layer of folic acid.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2013
Superparamagnetic iron oxide nanoparticles are developing as promising candidates for biomedical applications such as targeted drug delivery. In particular, they represent an alternative to existing antitumor drug carriers, because of their ultra-fine size, low toxicity and magnetic characteristics. Nevertheless, there is a need to functionalize them in order to achieve good biocompatibility, efficient modification for further attachment of biomolecules, and improved stability.
View Article and Find Full Text PDF