Infrared (IR) laser ablation-remote-electrospray ionization (LARESI) platform coupled to a tandem mass spectrometer (MS/MS) operated in selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) modes was developed and employed for imaging of target metabolites in human kidney cancer tissue. SRM or MRM modes were employed to avoid artifacts that are present in full scan MS mode. Four tissue samples containing both cancerous and noncancerous regions, obtained from three patients with renal cell carcinoma (RCC), were imaged.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) is the most prevalent and lethal malignancy of the kidney. Despite all the efforts made, no tissue biomarker is currently used in the clinical management of patients with kidney cancer. A search for possible biomarkers in urine for clear cell renal cell carcinoma (ccRCC) has been conducted.
View Article and Find Full Text PDFThe aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells.
View Article and Find Full Text PDFFuel biodegradation linked to sulfate reduction can lead to corrosion of the metallic infrastructure in a variety of marine environments. However, the biological stability of emerging biofuels and their potential impact on copper-nickel alloys commonly used in marine systems has not been well documented. Two potential naval biofuels (Camelina-JP5 and Fisher-Tropsch-F76) and their petroleum-derived counterparts (JP5 and F76) were critically assessed in seawater/sediment incubations containing a metal coupon (70/30 Cu-Ni alloy).
View Article and Find Full Text PDFCorrosion processes in two North Sea oil production pipelines were studied by analyzing pig envelope samples via metagenomic and metabolomic techniques. Both production systems have similar physico-chemical properties and injection waters are treated with nitrate, but one pipeline experiences severe corrosion and the other does not. Early and late pigging material was collected to gain insight into the potential causes for differential corrosion rates.
View Article and Find Full Text PDF