Publications by authors named "J L Silen"

The instrument COSIMA (COmetary Secondary Ion Mass Analyzer) onboard of the European Space Agency mission Rosetta collected and analyzed dust particles in the neighborhood of comet 67P/Churyumov-Gerasimenko. The chemical composition of the particle surfaces was characterized by time-of-flight secondary ion mass spectrometry. A set of 2213 spectra has been selected, and relative abundances for CH-containing positive ions as well as positive elemental ions define a set of multivariate data with nine variables.

View Article and Find Full Text PDF

The cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles.

View Article and Find Full Text PDF

The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization.

View Article and Find Full Text PDF

Comets are composed of dust and frozen gases. The ices are mixed with the refractory material either as an icy conglomerate, or as an aggregate of pre-solar grains (grains that existed prior to the formation of the Solar System), mantled by an ice layer. The presence of water-ice grains in periodic comets is now well established.

View Article and Find Full Text PDF

Purpose: This study aims to investigate whether the uptake of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide ([F]EF5) and 2-deoxy-2-[F]fluoro-d-glucose ([F]FDG) is associated with a hypoxia-driven adverse phenotype in head and neck squamous cell carcinoma cell lines and tumor xenografts.

Methods: Xenografts were imaged in vivo, and tumor sections were stained for hypoxia-inducible factor 1α (Hif-1α), carbonic anhydrase IX (CA IX), and glucose transporter 1 (Glut-1). Tracer uptakes and the expression of Hif-1α were determined in cell lines under 1% hypoxia.

View Article and Find Full Text PDF