Publications by authors named "J L Silberg"

Enzymes that produce volatile metabolites can be coded into genetic circuits to report nondisruptively on microbial behaviors in hard-to-image soils. However, these enzyme reporters remain challenging to apply in gene transfer studies due to leaky off states that can lead to false positives. To overcome this problem, we designed a reporter that uses ribozyme-mediated gene-fragment complementation of a methyl halide transferase (MHT) to regulate the synthesis of methyl halide gases.

View Article and Find Full Text PDF

Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure.

View Article and Find Full Text PDF

Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK.

View Article and Find Full Text PDF

Microbes can be found in abundance many kilometers underground. While microbial metabolic capabilities have been examined across different geochemical settings, it remains unclear how changes in subsurface niches affect microbial needs to sense and respond to their environment. To address this question, we examined how microbial extracellular sensor systems vary with environmental conditions across metagenomes at different Deep Mine Microbial Observatory (DeMMO) subsurface sites.

View Article and Find Full Text PDF

Soil microbial communities with reduced complexity are emerging as model systems for studying consortia-scale phenotypes. To establish synthetic biology tools for studying these communities in hard-to-image environmental materials, we evaluated whether a single member of a model soil consortium (MSC) can be programmed to report on gene expression without requiring matrix disruption. For these studies, we targeted a five-membered MSC that includes , , sp003130705, sp001905665, and .

View Article and Find Full Text PDF