Publications by authors named "J L Shipp"

Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.

View Article and Find Full Text PDF

Two novel cyclometallated iridium(III) complexes have been prepared with one bidentate or two monodentate imidazole-based ligands, 1 and 2, respectively. The complexes showed intense emission with long lifetimes of the excited state. Femtosecond transient absorption experiments established the nature of the lowest excited state as IL state.

View Article and Find Full Text PDF

To unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) -acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand IL state to the desired charge-separated CSS state.

View Article and Find Full Text PDF

Many adult inpatients experience urinary continence issues; however, we lack evidence on effective interventions for inpatient continence care. We conducted a before and after implementation study. We implemented our guideline-based intervention using strategies targeting identified barriers and evaluated the impact on urinary continence care provided by inpatient clinicians.

View Article and Find Full Text PDF

This work demonstrates photocatalytic CO reduction by a noble-metal-free photosensitizer-catalyst system in aqueous solution under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine complex, [MnBr(4,4'-{EtOPCH}-2,2'-bipyridyl)(CO)] (), has been fully characterized, including single-crystal X-ray crystallography, and shown to reduce CO to CO following photosensitization by tetra(-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride [Zn(TMPyP)]Cl () under 625 nm irradiation. This is the first example of employed as a photosensitizer for CO reduction.

View Article and Find Full Text PDF