Publications by authors named "J L Rothstein"

The GC hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 GC hexanucleotide repeats.

View Article and Find Full Text PDF

The GC hexanucleotide repeat expansion in the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 GC hexanucleotide repeats.

View Article and Find Full Text PDF

As many as one in three people worldwide have anemia, with young children at increased risk of both disease and complications. In settings without clinical laboratories, portable hemoglobinometers serve important roles in diagnosing anemia and estimating prevalence. Here, we assess the validity of two such point-of-care devices-the HemoCue Hb201 and the HemoCue Hb301-relative to the international reference standard, the cyanmethemoglobin method.

View Article and Find Full Text PDF

TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches.

View Article and Find Full Text PDF