Publications by authors named "J L N'Diaye"

Self-assembled monolayers (SAM) are ubiquitous in studies of modified electrodes for sensing, electrocatalysis, and environmental and energy applications. However, determining their adsorptive stability is crucial to ensure robust experiments. In this work, the stable potential window (SPW) in which a SAM-covered electrode can function without inducing SAM desorption was determined for aromatic SAMs on gold electrodes in aqueous and non-aqueous solvents.

View Article and Find Full Text PDF

The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed.

View Article and Find Full Text PDF

Organic redox-active materials, combined with high-surface-area carbonaceous substrates, form sustainable and low-cost composites with greatly enhanced electrochemical charge storage capacities. The electrochemical capacitive behavior of a composite electrode containing tetraphenylporphyrin sulfonate (TPPS), Chemically polymerized luminol (CpLum), and carbon nanotubes (TPPS-CpLum-CNT) was studied and compared with individual TPPS-CNT and CpLum-CNT composites. The dual-layer TPPS-CpLum had a combined contribution to the electrochemical charge storage, which led to an increased volumetric capacitance over the bare CNT and individual TPPS-CNT and CpLum-CNT composites.

View Article and Find Full Text PDF

A stable and magnetic graphene oxide (GO) foam-polyethyleneimine-iron nanoparticle (GO-PEI-FeNPs) composite has been fabricated for removal of endocrine disruptors-bisphenol A, progesterone and norethisterone-from aqueous solution. The foam with porous and hierarchical structures was synthesized by reduction of graphene oxide layers coupled with co-precipitation of iron under a hydrothermal system using polyethyleneimine as a cross linker. The presence of magnetic iron nanoparticles facilitates the separation process after decontamination.

View Article and Find Full Text PDF

The integration of graphene materials into electrochemical biosensing platforms has gained significant interest in recent years. Bulk quantities of graphene can be synthesized by oxidation of graphite to graphite oxide and subsequent exfoliation to graphene oxide (GO). However, the size of the resultant GO sheets changes from the parent graphite yielding a polydispersed solution of sizes ranging from a few nanometers to tens of micrometers.

View Article and Find Full Text PDF