Publications by authors named "J L Menchaca-Diaz"

Although enteropathogenic Escherichia coli (EPEC) are well-recognized diarrheal agents, their ability to translocate and cause extraintestinal alterations is not known. We investigated whether a typical EPEC (tEPEC) and an atypical EPEC (aEPEC) strain translocate and cause microcirculation injury under conditions of intestinal bacterial overgrowth. Bacterial translocation (BT) was induced in female Wistar-EPM rats (200-250 g) by oroduodenal catheterization and inoculation of 10 mL 10(10) colony forming unit (CFU)/mL, with the bacteria being confined between the duodenum and ileum with ligatures.

View Article and Find Full Text PDF

Microcirculatory dysfunction plays a pivotal role in the pathogenesis of severe sepsis and septic shock; hence, microcirculation blood flow monitoring has gained increasing attention. However, microcirculatory imaging is still investigational in human sepsis and has not yet been incorporated into routine clinical practice for several reasons, including the difficult interpretation of microcirculation imaging data, difficulty to draw a parallel between sublingual microcirculation imaging and organ microcirculation dysfunction, as well as the absence of microvessel dysfunction parameters defining sequential microcirculatory changes from the early to late stages of the disease, which could aid in the context of therapeutic approaches and of prognostic parameters. The purpose of this review was to bridge the experimental abdominal organ microvascular derangement kinetics and clinical aspects of microcirculatory findings in the early phase of severe sepsis/septic shock.

View Article and Find Full Text PDF

Infection is a major concern in intestinal transplant recipients. Bacterial migration to extraintestinal sites is a central component of the gut hypothesis of sepsis. However, some studies have cited the beneficial effects of bacterial translocation (BT) on the host acquired immune system.

View Article and Find Full Text PDF

Sepsis is the result from a complex bacterial-host interaction, which is an often-fatal response when host protective molecular mechanisms designed to fight invading bacteria surpass the beneficial intensity to the point of causing injury to the host. Increasing evidences have implicated the bacterial translocation (BT) as the main source for the induction of sepsis, although the beneficial effect of BT process has been related to the development of the intestinal immune response by physiological interaction between bacteria and host. In this article, we examined evolving concepts concerning to BT and discussed about its potential role in the promotion of microcirculation injury, moreover, its possible participation in the sepsis induction.

View Article and Find Full Text PDF