Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.
View Article and Find Full Text PDFThe growth responses of mature Norway spruce (Picea abies (L.) Karst.) trees exposed to elevated [CO(2)] (CE; 670-700 ppm) and long-term optimized nutrient availability or elevated air temperature (TE; ±3.
View Article and Find Full Text PDFEffects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years.
View Article and Find Full Text PDFA whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change.
View Article and Find Full Text PDFThe changes in photosynthetic rates, light environment and foliar nutrient concentrations following thinning were examined in an 8-year-old Eucalyptus nitens (Deane and Maiden) Maiden plantation. The objectives of the study were to: (1) determine the extent to which maximum photosynthetic rates (Amax) of E. nitens are affected by stand thinning; (2) relate the spatial pattern of Amax within the crown to the changes in light environment caused by thinning; and (3) establish if the responses of Amax to thinning are driven by changes in area-based foliar nitrogen (Na) or phosphorus (Pa) concentrations.
View Article and Find Full Text PDF